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Three-dielectric-layer hybrid solvation model with spheroidal cavities in biomolecular simulations
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This paper extends the three-dielectric-layer hybrid solvation model for treating electrostatic interactions in
biomolecular simulations from the spherical geometry [Comm. Comp. Phys. 6, 955 (2009)] to the prolate/
oblate spheroidal geometries. In the resulting model, the inner spheroidal cavity of a low dielectric constant &;
contains an irregular-shaped solute and some explicit solvent molecules, while the unbounded outer layer is
used to implicitly model the bulk solvent as a dissimilar continuum medium of a high dielectric constant &,,.
The thin intermediate translation layer, which also consists of explicit solvent molecules, assumes a continuous
variation of the dielectric permittivity e(r) changing smoothly from g; to &,. In particular, the so-called
quasiharmonic dielectric permittivity profile is introduced based on a harmonic interpolation, thus allowing
analytical series solutions of the generalized Coulomb potential and the self-polarization energy in terms of the
associated Legendre functions. A key advantage of the proposed quasiharmonic dielectric model lies in the fact
that it overcomes the inherent mathematical divergence in the self-polarization energy that exists in the simple
and widely used steplike dielectric model. Numerical examples are included to show some simulated behaviors

of the quasiharmonic dielectric model and the corresponding analytical solution.
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I. INTRODUCTION

Electrostatic interactions are well known to provide cru-
cial contributions to the structure, dynamics, and function of
biomacromolecules; as such, they have been a subject of
intense theoretical study in biomolecular simulations. Most
electrostatic models applied in the computer simulation of a
biomacromolecule adopt a full-atom representation of the
macromolecule, but have the choice of treating the surround-
ing solvent as a collection of explicit solvent molecules or as
an implicit continuum medium. Explicit representation of the
solvent molecules [1-3] offers a detailed and accurate de-
scription of the biological system, yet all-atom simulations
are expensive to perform due to the long-range nature of the
electrostatic interactions. Alternatively, in implicit solvent
models [4,5], a solvent is modeled as a continuum medium
with a high dielectric constant outside the macromolecule,
while the macromolecule atoms themselves are explicitly
modeled with assigned partial charges embedded in a dis-
similar continuum medium of a low dielectric constant inside
the macromolecule volume. Although the neglect of explicit
solvent molecules can significantly reduce the computational
cost, the implicit solvent models also have fundamental limi-
tations due to the fact that the important atomic details of
how the solvent molecules interact with the surface of the
macromolecule are ignored. In order to benefit the efficiency
of implicit solvents for replacing the solvent that gives rise to
much of the computational cost, while also directly model
structural effects of the solvent in the proximity of the mac-
romolecule, there has been considerable recent interest in
developing hybrid explicit/implicit solvent models [6-8], in
which the macromolecule together with a few boundary lay-
ers of the solvent molecules are considered explicitly within
a dielectric cavity, and outside the cavity, the solvent is
treated implicitly as a dielectric continuum.
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In a hybrid solvent model, the shape of the dielectric cav-
ity determines the amount of solvent to be treated explicitly
around the solute. The spherical geometry has often been
used because the electric field of a spherical dielectric object
can be calculated analytically by the Kirkwood expansion [9]
with arbitrary accuracy. However, this treatment may be in-
efficient for nonspherical solutes like certain globular pro-
teins and other elongated biopolymers such as actin and
DNA. For macromolecules of irregular shapes, using a cor-
responding irregular-shaped geometry to incorporate only a
few shells of solvent molecules adjacent to the macromol-
ecules would make the simulated system much smaller, but
how to efficiently obtain an accurate electric field for such
shapes remains a great challenge. In particular, to employ
solvation shells with irregular shapes, the Poisson equation
needs to be solved numerically at every simulation time step,
which, depending on the system size, may become more
computationally intensive than standard explicit all-atom sol-
vent simulations. Therefore, for an irregular-shaped macro-
molecule, it may be more beneficial to adopt a nonspherical
but still regular-shaped cavity that can conform closely to the
irregular shape of the biomolecule. In the present paper, we
focus on spheroidal cavities in particular, but it should be
pointed out that, the results can be extended, in essence, in a
straightforward manner to triaxial ellipsoidal cavities as well.

Generally speaking, we are concerned with accurate cal-
culation of electrostatic interactions between charges inside a
dielectric cavity immersed in an implicit solvent medium.
For simplicity, in most theoretical studies of hybrid solvent
models, macroscopic dielectric constants g; and g, are as-
signed for the cavity and the surrounding implicit medium,
respectively, leading to a sharp jump in the dielectric con-
stant at the interface between them. In this case, it is well
known from classical electromagnetism that the presence of
a charged particle inside the dielectric cavity polarizes the
surrounding dissimilar dielectric medium, which in turn in-
duces charges at the interface and makes a contribution,
called the reaction field, to the electric field throughout the
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cavity. And accordingly, a new potential energy, usually
called the self-polarization energy, arises due to the mutual
interaction between the source charge and its own induced
charges.

For the steplike dielectric model mentioned above, there
exist analytical solutions for the electrostatic potential and
the self-polarization energy [10-12], but unfortunately, there
are a few disadvantages as well. By construction, all the
induced charges will be localized at the cavity surface of
zero width so that both the real and the induced charges can
coincide at the same location, giving rise to a self-
polarization energy that diverges at the cavity surface. Be-
sides, at the cavity surface the sharp transition from ¢; to ¢,
in the dielectric constant is clearly unphysical due to inter-
diffusion between the cavity and the surrounding medium.
For spherical cavities, several solutions have been proposed
to overcome the mathematical divergence of the steplike di-
electric model, including the regularization method [13-15],
and a more rigorous numerical approach [16,17] in which the
steplike dielectric function is replaced by a continuous varia-
tion of the dielectric constant within a thin translation layer
around the interface. We refer to any dielectric model of this
kind as a three-layer model, the radial dielectric function
&(r) changing smoothly from &; to &, within the translation
layer. As a direct consequence of such a three-layer model,
the induced charges are spread along the translation layer
and the mathematical divergence in the self-polarization en-
ergy disappears. In fact, an explicit numerical formula for the
self-polarization energy corresponding to general continuous
three-layer dielectric models has been obtained [16]. How-
ever, as the numerical nature of this formula requires the
discretization of the continuous dielectric function into a
multistep (piecewise constant) one within the translation
layer, new numerical divergence is encountered [18].

To overcome the inherent mathematical divergence of the
steplike dielectric model, in Ref. [19], a novel three-
dielectric-layer hybrid solvation model corresponding to the
spherical geometry is introduced. In this model, the interior
spherical cavity contains the solute and some explicit solvent
molecules, while the exterior layer models the bulk solvent.
In the intermediate layer that also contains explicit solvent
molecules, a special dielectric permittivity profile, con-
structed through a harmonic interpolation, is employed to not
only achieve a continuous transition from the interior cavity
to the exterior layer but also allow an analytical series solu-
tion of the model by generalizing the Kirkwood series ex-
pansion. Therefore, the goal of the present paper is to extend
the three-dielectric-layer hybrid solvation model from the
spherical geometry to the prolate/oblate spheroidal geom-
etries, and present the corresponding analytical series solu-
tions. The paper is organized as follows. In Sec. II, we shall
briefly review the analytical solution of the steplike model.
Then in Sec. III, we will present the three-dielectric-layer
hybrid solvation model with prolate spheroidal cavities, and
the corresponding analytical solution. Next in Sec. IV, how
to extend the results to oblate spheroidal cavities is briefly
discussed. Numerical examples are then presented in Sec. V,
and some concluding remarks are finally given in Sec. VL.
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FIG. 1. Schematic illustration of the steplike dielectric model:
the dielectric constants of a prolate spheroid and the surrounding
medium are ¢; and ¢, respectively. The prolate spheroid, defined by
the equation £=¢,, has an interfocal distance a. A point charge e, is
located at the point r;=(&;, 7,, $,=0) in the xz plane.

II. ANALYTICAL SOLUTION FOR THE STEPLIKE
DIELECTRIC MODEL

Simply speaking, in the present paper we are concerned
with the calculation of the generalized Coulomb potential
energy between two particles inside or outside a dielectric
prolate spheroid with the coordinates r and r,, and the
charges e and e, respectively. First of all, there are several
definitions of prolate spheroidal coordinates, and in this pa-
per, the prolate spheroidal coordinates (€, 7, ¢) are defined in
terms of the Cartesian ones (x,y,z) as follows:

a

x= E\e"’(fz— 1)(1 = 77)cos ¢,

y= gv(é— (1= Psin ¢, z= gén,

where a is the interfocal distance of the prolate spheroid, &
€ [1,%) is the radial variable, 7 € [-1,1] is the angular vari-
able, and ¢ €[0,27] is the azimuthal variable, respectively.
Note that the surface of constant ¢ is a prolate spheroid with
interfocal distance a (é=1 corresponds to the line between
the foci). Also note that here the pole of the prolate spheroi-
dal coordinate system is denoted by the z axis.

The generalized Coulomb potential energy between these
two particles can be calculated through V.(r,r,)=e®(r,r,),
where ®(r,r,) is the electrostatic potential which verifies the
Poisson equation

V.e(r) Vd(r,r,) =—4medr-r,), (1)

where &(r) is the spatially dependent dielectric function, and
&(...) is the Dirac delta function. The three-dimensional so-
lution of this equation, even assuming the spheroidal geom-
etry and only the radial £ dependence for &(r), is quite com-
plicated to find since Eq. (1) is a second-order differential
equation with a variable, spatially dependent coefficient.
Nevertheless, the Poisson Eq. (1) can be solved analyti-
cally if we further assume that the radial & dependence for
e(r) corresponds to the steplike model, as shown in Fig. 1.
The dielectric constants for the prolate spheroid and the sur-
rounding medium are g; and g, respectively. The point
charge e, is assumed to be located, without loss of generality,
at the point r,=(&;, 7,, ¢,=0) in the xz plane inside or out-
side the dielectric spheroid defined by the equation &=§,.
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The interfocal distance of the prolate spheroid is a.

The analytical solution to this electrostatic problem has
been published in the literature. In particular, the exact solu-
tion corresponding to the case that the point charge is set
outside the prolate sphere is given in Ref. [20], while that
corresponding to the case that the point charge is set inside
the prolate sphere is given in Ref. [10]. We review these
results here for the paper to be self-contained. In short, the
electrostatic potential ®, or ®; at an observation point r
=(&, 57, @) outside or inside the spheroid, respectively, due to
a point charge e, inside the prolate spheroid (so & >&,=1)
is given by

S e HE A K O OY (7).

(Dﬂ(r’ rS) =
€i y=0 m=0
(2a)
d,(r,r,) = &2 2 (gi— So)Hfm
|l' rs| €ill =0 m=0
XONE)Q(E)K,, PO, ($.m),  (2b)
where P)'(...) and Q7'(...) are the associated Legendre func-

tions of the first and second kinds, respectively, and

Y,/ (¢, m) = cos(m) P,/ (1),

(n—m)!]2

(n+m)!

Hmn = 2(2n + 1)(2 - 5m0)(_ 1)m|:

He = HounPr(E)P (7).

n
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HE, = MOy (£) PN (7).
A= an(gb)éyf(fb) - Qf(gb)ﬁ;”(fb),

Ky = Soan(gb)QZl(gb) - 8,Q?(§b)ﬁ:,n(§b)-

Here &, is the Kronecker delta, and

P& = (n—m+ 1)P", (&) - (n+ 1)EP(E),
MO = (n—m+1)Q0 (&) - (n+ 1) £Q(é).

On the other hand, if the charge e, is located at the point
r,=(&,, 5, $,=0) outside the prolate sphere (so &=§&,>1),
we have

% (l’ T, ) - 8())I]_(r%n
| - I | A =0 m= 0
><P?(gb)ﬁf(§b>lcnzgz"<5)yz"<¢,n>, (3a)
q) I' r ) - € HranAmn mn n(g)Ym(q5 7])
€0l n=0 m=0

(3b)

From Egs. (2) and (3), the self-polarization energy V(r)
can be calculated from V.(r,r,) by taking r=r,, e=e,, ex-
cluding the direct Coulomb interaction from ®(r,r,), and
dividing by 2 as it corresponds to a self-energy, namely,
VS(r)=;-eCI>(r,r). Thus we get

5 2 > (81— £ Hyn P (E) P (E)K,LOM (O P (), if E= &,
& an =0 m=0
V(r) = (4)
2—2 2 (8= 8,) H,m Q" (&) 0T (&) K,  PTHE P (1), if E<&,.
& an =0 m=0

III. ANALYTICAL SOLUTION FOR THE QUASI-
HARMONIC DIELECTRIC MODEL

The major problem of employing the simple steplike
model and the corresponding analytical solution (4) to calcu-
late the self-polarization energy lies in the fact that it di-
verges at the spheroidal surface £é=§,. In order to remove
both the mathematical singularity and the unphysical as-
sumption of the sharp transition in the dielectric constant at
this surface, an intuitive way is to introduce a thin translation
layer of finite width in the & direction, say 26, centered at
&=¢, with a continuous radial dielectric profile, say &(§),
separating the two dielectric continua, leading to a three-
layer dielectric model, as shown in Fig. 2. What should be

emphasized is that, unlike the three-dielectric-layer model
for the spherical geometry [19] in which the translation layer
has the same physical width in the radial direction (r direc-
tion), the three-layer dielectric model proposed here for the
spheroidal geometry uses a &-dependent width. As can be
seen from Fig. 2, the actual width of the translation layer in
the r direction is therefore not uniform. For the inner layer of
£=¢,— 5 (well inside the cavity), the dielectric constant
takes the cavity value g;, while for the outer layer of £é= ¢,
+ & (well outside the cavity), the dielectric constant takes the
surrounding medium value g,. Between them, for the inter-
mediate translation layer of £,— 6<<£<<&,+ S, one can choose
any analytical and physically plausible continuous profile for
e(§¢) to connect these two extreme values. Two natural
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FIG. 2. Schematic illustration of a three-layer dielectric model:
The inner layer (§= &,-6) has a dielectric constant of &;, while the
outer layer (£€= &,+ 6) has a dielectric constant of &,. The interme-
diate translation layer (£,—8<&<&,+ ) assumes a continuous di-
electric permittivity profile (&) that connects g; and &,,.

EE 4

choices of &(¢§) include the linear profile defined by

€is if 55 é:[,
eite, &-—-8&, .
e(é) = 5 25 (&-98, if §<&E<&, (5)
€o> if 52 gOa
and the cosinelike profile given by
€is if §S gl’
it & i~ ©o - .
e(é) = £ 28 +8 28 cos(gzjlﬂ'), if §<E<E,,
€o> if 52 SO’

(6)

respectively, where &=§,— 8 and &,=¢§,+ o represent the in-
ner and the outer boundaries (edges) of the intermediate
translation layer, respectively.

As indicated earlier, for a general dielectric permittivity
profile e(§), it may be infeasible to find the analytical solu-
tion of the Poisson Eq. (1) since it is a second-order differ-
ential equation with a variable coefficient. When the permit-
tivity assumes a continuous three-layer model and the radial
dielectric profile in the translation layer is smooth, by fol-
lowing a procedure as described in Refs. [19,21,22] for find-
ing analytical solutions to the Poisson equation with the
spherical geometry, in principle it may be possible to obtain
the analytical solution to the Poisson Eq. (1) with the sphe-
roidal geometry as well. However, the procedure shall be
quite complicated and thus expected to be inefficient for
computations because it will involve the solution of a system
of some auxiliary second-order differential equations with
variable coefficients.

The Poisson Eq. (1) corresponding to a continuous three-
layer dielectric model could also be solved numerically by
the following procedure, which is very similar to that pro-
posed by Bolcatto et al. in Ref. [16] for calculating self-
polarization energies of spherical quantum dots. First, the
translation layer of width 28 (in terms of &) is subdivided
into multiple regions, [&_;,&], [=1,2,...,L—1, with §
=¢&,— 0 and &_=§,+ 9, and in each one of them the select
dielectric function is approximated by a constant value such
as the mean value of the dielectric function in this region. As
the result, the original continuous radial dielectric profile is
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FIG. 3. (Color online) Illustration of several dielectric models
for the translation layer between &,— & and &,+ 6, assuming ¢;<g,,.
Dot-dashed line, the steplike model; dotted line, the linear model;
dashed line, the cosinelike model; and solid line, the quasiharmonic
model.

approximated by a multistep (piecewise constant) one, and
consequently, the original Poisson equation with the continu-
ous radial dielectric profile reduces to one for layered dielec-
tric prolate spheroids. By exploiting the analytical solution of
the aforementioned steplike model, the solution of the Pois-
son equation for layered dielectric spheroids could be found
in the same way as for layered spheres [16,18,21,23-25].
Indeed, this idea or similar has been used to calculate the
potential distribution in a layered anisotropic spheroidal vol-
ume conductor [26]. However, this approach has a funda-
mental limitation: as its numerical nature requires the dis-
cretization of a continuous radial dielectric function £(§) into
a piecewise constant one within the translation layer, new
numerical divergence emerges. No matter how many steps
are used to discretize the translation layer, the ultimate effect
of this multistep approximation of a continuous radial dielec-
tric profile e(§¢) is to approximate a continuous self-
polarization energy by one with divergence at every step
edge. We therefore believe that for a general continuous di-
electric function, this procedure does not necessarily con-
verge, let alone is able to recover the exact solution of the
corresponding Poisson equation when L— e,

In this paper, aiming to overcome the mathematical diver-
gence of the steplike model, instead we propose the follow-
ing three-layer dielectric permittivity profile:

€, if gS §15
B, [(E+1)\ [ .
g(§)=y|a+=In , if §<E<é, (7)
2 -1
€0 if §= ¢,
where
/_ /_ — I
_CIVE,—Oo\E; _ Ve, — Vg,
- C1—C ’ - C1—C '
with
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For convenience, here and in the sequel, the dielectric
permittivity profile in the translation layer given by Eq. (7) is
referred to as the quasiharmonic profile since, although
originally it was constructed through two harmonic functions
Pg(g)El and Q8(§)=%ln[(§+1)/(§—l)], it is not harmonic
by itself. The three three-layer dielectric models mentioned
so far together with the steplike model are illustrated in Fig.
3. As can be seen, like the linear profile, the derivative of the
quasiharmonic dielectric profile is discontinuous at both
edges of the translation layer, whereas the cosinelike dielec-
tric profile is smooth at the same locations.

The analytical solution to the Poisson Eq. (1) correspond-
ing to this quasiharmonic dielectric model is easy to find.
Without loss of generality, let us first assume that a point
charge e, is located at the point r,=(&,, 7,, $,=0) in the xz
plane inside the inner layer (&= &=¢§,— 6). Accordingly, the
Poisson Eq. (1) becomes

V.g;VO,(r,r)=—4medr-r,), if £=¢, (8a)
V . 8(5) V (I)t(r7rx) = O, if §[ < g < 507 (8b)
AD (r,r) =0, if é=¢,, (8¢)

where ®@;, @,, and ®, stand for the electrostatic potential in

the inner, the translation, and the outer layers, respectively.
At the two edges of the dielectric translation layer, the

continuity of the potential and the normal flux requires that

I, 9D
(Di|§=§1 = (I)l|§=§1’ {951 = a_gt > (93)
&g &g
oD, ad,
D,leg, = Pileg,s 7 | =% B (9b)
Y% Y%

The key in obtaining the analytical solution for the pro-
posed quasiharmonic model is this important observation
[19]: if &(r) in the quasiharmonimuation V-[e(r)V ¢(r)]
=0 satisfies AVe(r)=0, then A[Ve(r)(r)]=0. Similarly, if
&(r) in the quasielliptic equation V-[&(r) V ¢(r) |=p(r) satis-
fies AvVe(r)=0, then A[Ve(r)e¢(r)]=p(r)/ e(r). Since by
construction, A \*"8(5):0 in the translation layer, the potential
in this layer @, can thus be expressed as

where
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LS S [ConP () + D,y Q1 (E1Y (7).

\”8(5) n=0 m=0

(I),(l‘,l‘s) =

or, when the charge e, is located inside the translation layer,
as

e,
®,(r,r,) = v
! \'/8S8(§)|l' -1

+D,, 0, (91, (¢, 7),

where e,=¢(¢,), and C,,, and D,,, are undetermined constant
expansion coefficients.

For the purpose of simplifying the mathematical formula-
tions, now we actually write the potential in the three layers
as

e -
. Cmnan
+ N’%E E [ €3]

n=0 m=0

LS S HE AN @Y (),

VE;€,a n=0 m=0

(Dﬂ(r’ rS’) =

(10a)

Oy(r,ry) = — & B3y HE BLPIEY (¢, 7),

8,»|1’—1’S| 8ian:0 m=0
(10b)
€ " "
®,(r,r,) = ===, > H [CDP"(&)
\’sis(f)a n=0 m=0
+ DoAY, 7). (10¢)

Here, the constant expansion coefficients AW W o) hq

D'V can be determined by the boundary condition (9), to-
gether with the orthogonality of cos(m¢) and that of the
Legendre polynomial functions PJ(...), as well as the
known expansion of the reciprocal distance in the prolate

spheroidal coordinates [27-29], namely,
1 - P m m :

=2 2 Hn QR @Y (), if E=E,
A =0 m=0

1

|I‘—I'S| -

1 ® n
;2 > HE P OY (bo7), if €=,

n=0 m=0

Omitting all details, for n=0,1,---, and m=0,1,---,n, we
have
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0, P(&), - P&, 0, (&)
0,(&), 0, - P, (o), -0,(&)
A D m Am B m
M= 0, Py, —Pé) - /_—Pn &), -0,E&) - \/_8—Q,, (&)
A~ m m Am £ m
o), 0. —Pi )— P (é0), —0,(&) - \QQ" (é0)
I
Similarly, if e, is located inside the outer layer (&= £&,=¢, Here, the constant expansion coefficients Af:n, mn, CE:,,, and

+6), we can write

®,(r,r,) = | D&Y (7).

r—r | €0l n=0 m=0

(11a)

®,(r,r) = E 2 HZ B2 PN OY"™ (b, 7),
\’8 €4 n=0 m=0
(11b)
D,(r,r) = E 2 MO [CmPr(9)

Ve 8(§)an 0 m=0

+D0ONONY (b, m), (11c)

WPZ&)}I‘G the constant expansion coefficients Aﬁf,)l, Bﬁfr)l, Cﬁfr)l, and
D,,» can be calculated by

g\ [ oo
B - P, (&)

e T o
Do) \=P(&)

Finally, when e, is located inside the intermediate layer
(§<&,<&y), we can write

®,(r,r,) = E 2 [H2,AD

\8 s€ol n=0 m=0

+HD ADIOMOY (), (12a)

[ 2 E [H%I’IBSSI)I-'- Hfm mnjlpm(g)ym((lS 77)

O (r,ry) =
VEE n=0 m=0
(12b)
Cs
irr) = Ve &(@)|r— rs| Ve 8(5)61,% mEO [(HnC S')'
+ My, CNPI(E) + (HS,D)
+Hp DOV (b, 7). (12¢)

DS,: are determined by

A0 P(&)
e 0
M >< mn - ,\m ﬁ " ,
C,(;,), P(&) + ?Pn (&)
3) Vi
mn 0

while A® B® c® 4ng D,, 4) are determined by

mn’ mn’® mn’

n 0
B(4) Q:?(fo)
Mx| | 0

p@ |\ oren + \%QT(&))

The practical implementation of the above analytical so-
lution additionally requires truncating the infinite summation
at a finite n value, say N, which could be very large in order
to reach convergence or high accuracy. In this case, to avoid
overflow and potential computer cutoff errors when using
Egs. (10)-(12), we further carry out convenient rewritings of

these equations. For convenience, for n=0,1,..., and m
=0,1,...,n, we let
A e
umn(g) - Q:Ln(f) > mn(g) (f) ) Ymn = umn(gl)vmn(§0)’
and
PII(&) = PI(OIPIE) = (n—m+ )P, (OIPI(E) = (n+ 1)E,

0"(&) = QMO = (n—m+1)Q",(&/Q"(&) — (n+ 1)E.

Then, when e, is located inside the inner layer, we can
write the potential in the three layers as

—> > Hh A

VE;€,a n=0 m=0

P,(r,ry) = MO Y (b, m),

(13a)

016701-6



THREE-DIELECTRIC-LAYER HYBRID SOLVATION MODEL ... PHYSICAL REVIEW E 81, 016701 (2010)

D,(r,r,) = + —2 2 Hor O (EDBMPI (O Y1 (b 7). (13b)
| - I | il =0 m=0
D(r,r,) = —— 2 E HE [0mn(€0)CD P (&) + DV O™( Y™ (b, 7). (13c)

VE; 8(§)an =0 m=0

where the expansion coefficients Af,l,),, Bf,l,)l, Ci;n, and D,, l> are now calculated by

Al -1
(1) 0
YR i 1
Cmn - Qzl(gl)
D) 0
with
0’ 1’ - ymn’ -1
1, 0, -1
- pm B 1 B
MW= 0, P, ( P& == | Y — Q&) -
VE; Ve
_ B B
" 0, —Pl&) - =, Q&) -
Qn (§0) 5 o VSO o \/8_0
Similarly, if e, is located inside the outer layer, we can write
D, (rr)=—"" 2 o 20, (9Y, (b, 1), (14a)
|I‘ I, | €0l n=0 m=0
D(r,ry) = —==2 > HSBO P&V 7)., (14b)
V’808ia n=0 m=0
®,(r.r) = —— E 2 HE[CPI(E) + 1, (E)DSON (O] (7). (14c)
\8 8(5)(1,, =0 m=0
where the expansion coefficients Aﬁz B;fr)l Cﬁﬁ, and D,%)l are now determined by
A2 0
B(2) -1
(2) mn | _
R = i
Dy, "(£0)
with
0, 1, -1, -1
1 s O, -1 s = Ymn
— i ﬁ m B
M@= 0, P, -Pl& -, -0N(E) - =
Ve, Ve;
_ - B ~ B
mn 0, _P’::(g )_?7 _Qnm(g ) T | Ymn
Qn (50) ) [@] \5'80 (0] \/8_0

Finally, when e, is located inside the intermediate translation layer, we can write
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s

q)o(r’r.s) = — 2 2 [Hgnumn(gl)Afs;i + H;'I:lyrA](;t)l] sz(g) Y:?(d” 77) s

VE4E A n=0 m=0

®,(r,r,) = S > > [H2,BY)

/

VEE,;a n=0 m=0

€

¢t(r7 rs) =

+ (H it E)DE) + HE 5, DDYOI(E) 1Y (b, 7).

Here, the expansion coefficients A® BB )

mn’ mn’ mn’> n

M(l) X mn

while the expansion coefficients AW BW o

mn’ mn’ mn’
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+
[ [
\”838(§)|r - rs| \“'Ssg(f)a n=0 m=0

(15a)
+ MoV £0) B I PR (Y (b, 7). (15b)

G S S LHE )+ HE 0, (£) NP
(15¢)

and DY) are now determined by

1
0

Brey+ 2 |

0

and D;ﬂ are now determined by

0
1
0
_ B
0, (&) + y—
Ve,

Accordingly, from Egs. (13)—(15), we can arrive at the self-polarization potential energy of a charged particle e at the

location r as follows:

82

28061 n=0 m=0

Vi(r)= { 2ea10 2
o2
28(5)61 n=0 m=0

IV. EXTENSION TO OBLATE SPHEROIDAL CAVITIES

The results described in Secs. II and III can be readily
extended to oblate spheroidal cavities if the corresponding
oblate spheroidal coordinates (£, 7, ¢) are defined through

x=§~/<1+§2)(1 — 7P)cos &,

y= N+ D)1= P)sin g 2= ¢n,

2 2 Hthun EDVAMOLH O P (7).

2 * n
e
— 0 2 MoV E)BIPIXE P (),

L+ 4l &DOHE) + VDo PR (O Q&) TP (),

if ¢€=¢,,

if §=¢,

> > Hom [ Y CEPE QT (E) + ,nl0)CEPI(9)

if §<E<é,.

where a is the interfocal distance of the oblate spheroid, &
€ [0,%) is the radial variable, e [-1,1] is the angular vari-
able, and ¢ €[0,27] is the azimuthal variable, respectively.
Under this definition, the surface of constant £ is an oblate
spheroid with interfocal distance a. In particular, when £=0,
the spheroid is degenerate and flattens to the circular disk in
the plane z=0 with radius a/2. Then all the results obtained
for prolate spheroids can be extended to oblate spheroids
basically by following this rule: replace & by ié where i
=\-1 and H,.n bY
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2
’]:[mnz 2i(2n + 1)(2 - 5m0)(_ l)m[ (n—m)!:| .

(n+m)!

As an example, a quasiharmonic three-layer dielectric
permittivity profile is given by

PHYSICAL REVIEW E 81, 016701 (2010)

O,(r,r,) = &

glr—r|

RRSES HE 0, GE)BLIPIGOY (b, ),

€ill n=0 m=0
€ if £=§, (17b)
. . B, [i€+1\|>
@) =e(id=a+In|— ||, if §<E<E),
2 \ié-1
&o> if £=¢&,
(r r ) - 2 2 Hmn[vmn lg )C(I)Pm(lg)
(16) ! Ve, 8(§)an =0 m=0 ¢
where A mg . m
+ D00 DY (6, m), (17¢)
.~ =
CINEy— CoVE; _ Ve~ Vg,
e aTe where the expansion coefficients Aﬁ,ly),, ,,:,)1, C”:,)L, and D(l are
with calculated by
1 <i§,+1) 1 (i§0+1>
¢y =<In| - , Ccy==In|l /.
2 \ig-1 2 \igp-1 A1) _1
Note that 8 is a pure imaginary number. B 0
Then, when a charge e, is located inside the inner layer, M x N _
the potential in the three layers is given by ¢t - 0,(i&)
pw 0
q)()(r’rs) - E 2 Hm] mn m(lg)Ym(gé 77)
\'8 €, n=0 m=0
(17a) with
|
O, 17 - /)\’mn’ -1
1, 0, -1
. _ S B B
M 0,  P"(ig), ( P (i&) - _g - Q&) - =
— Dy » IB m B
mi R 0’ _Pn(lgi))__s _Q (150)__
0,(i&o) e e
and g, if £€<¢,
e (9= (a-Ban" 2, if §<E<&o, (18)
Hmn=HmnPn (lgs)Pn(ns)5 80, lf 52 §0’
where
Yimn = umn(igl)vmn(lEO)' A~ [ A —
L CINE,—CNE & NE,—E;
Note that, using the fact that a= PR , PB= >
C1=0C C1—=C
with

04(i¢) =

Lofig+1) [ _7_7)
2ln(ig_l)—z(tan €3] 5 )

the quasiharmonic three-layer dielectric model given by Eq.
(16) can be rewritten as

é=tan"'(&), ¢&;=tan"'(&)).

In this form, ﬁ is a real number, and in fact ,é:—,Bi or B

= Bi.
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““““ 8=0.10

--8=0.05
200 50.02
—5=0.01
_o5 ‘ ‘ ‘
0 5 10 15 20
(b) r @A)

FIG. 4. (Color online) Self-polarization energy V, along a minor axis of the prolate spheroid (x*>+y?)/10?+z%/20°=1 corresponding to
the quasiharmonic model with §=0.1, 0.05, 0.02, and 0.01. (a) &,=10, and (b) &,=80.

V. NUMERICAL EXAMPLES

To illustrate the simulated behavior of the quasiharmonic
dielectric model and the corresponding analytical solution
for a prolate spheroid, we consider the dielectric prolate
spheroid given by (x’+y?)/a?+7z%/a3=1 with a,=10 A and
a,=20 A, which leads to & ~1.1547. The prolate spheroid
has a low dielectric constant of ¢;=2, and is embedded in a
dissimilar dielectric medium of a high dielectric constant of
g,=10 or 80, respectively. In all numerical simulations, the
imposed upper limit of n is set to N=100, and all analytical
results and illustrative plots are based on the calculation of
the self-polarization energies of 10 000 unit charges (in
atomic unit) uniformly distributed (in terms of the
&-dependent distance) either along a minor axis of the prolate
spheroid or along the ray extending from the center to the
point (10,0,20). Figure 4 shows the self-polarization energy
V, along a minor axis of the prolate spheroid, and Fig. 5
shows that along the ray pointing to the point (10,0,20), re-
spectively, corresponding to the quasiharmonic model with
0=0.1, 0.05, 0.02, and 0.01.

It is well known that under the steplike model, when the
source charge is placed in the region with a lower dielectric
constant, the induced charges have the opposite sign as the
source charge and then the interaction between the source
and the induced charges is attractive. On the contrary, if the
source charge is located in the region with a higher dielectric

N
o
T H
|
1ol 8=0.10 v
- - 8=0.05
---8=0.02
—8=0.01
1% 5 10 15 20 25
(a) r &)

constant, the induced charges have the same sign as the
source charge and then the interaction is repulsive. As can be
seen from Figs. 4 and 5, under the quasiharmonic model, the
self-polarization energy remains negative inside the cavity,
and the negative potential extends to the outside of the cavity
to some extent. As the translation layer decreases in size,
however, the self-polarization energy given by the analytical
solution for the quasiharmonic model will reduce to that for
the steplike model (not shown in the graphs). In addition, we
can observe that the quasiharmonic dielectric model leads to
singularity in the self-polarization potential energy at both
edges of the translation layer, precisely where the derivative
of (r) is discontinuous.

Finally, we apply the proposed quasiharmonic dielectric
model and the corresponding analytical solution to calculate
the self-polarization energy of a prolate spheroidal quantum
dot [16], in which the dielectric constant inside the dot is
typically higher than that outside, and consequently, a repul-
sive (positive) self-polarization potential energy arises due to
the mutual interaction between the (inside-dot) source and its
own induced charges. Specifically, we consider a small pro-
late spheroidal quantum dot given by the same equation but
with &,=12.6 (GaAs), and &,=1 (vacuum), respectively.
Again in all calculations, the imposed upper limit of n used
in the infinite summation is set to N=100, and in calculating
self-polarization energies, all 10 000 charges are assumed to
be unit charges (in atomic unit) and uniformly distributed (in

—20f8=0.10
-- 8=0.05
-250- - -5=0.02
—8=0.01
_30 : ‘ ‘ ‘
0 5 10 15 20 25

(b) r(A)

FIG. 5. (Color online) Self-polarization energy V, along the ray extending from the center to the point (10,0,20) corresponding to the
quasiharmonic model with 6=0.1, 0.05, 0.02, and 0.01. (a) &,=10, and (b) &,=80.
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-20f
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— =001
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(b) r (&)

FIG. 6. (Color online) Self-polarization energy V, of a prolate spheroidal quantum dot as a function of r corresponding to the quasihar-
monic model with §=0.1, 0.05, 0.02, and 0.01. (a) Along a minor axis of the prolate spheroid, and (b) along the ray extending from the center

to the point (10,0,20).

terms of the &-dependent distance) along a line. Figure 6(a)
shows the self-polarization energy V, along a minor axis of
the prolate spheroidal quantum dot, and Fig. 6(b) shows that
along the ray extending from the center to the point
(10,0,20), respectively, corresponding to the quasiharmonic
model with 6=0.1, 0.05, 0.02, and 0.01.

As mentioned earlier, in all simulations presented in the
present paper, the imposed upper limit of n used in the infi-
nite summation is set to N=100. In Fig. 7, we plot the rela-
tive error E in the self-polarization energy defined as

|V§N)(r) _ VilZO)(r)|

max [V{?(r)| °
0=r=20

E(r)= (19)

where Vi.N)(r) denotes the computed self-polarization energy
by using the analytical series solution with a chosen upper
limit N, for the case of Fig. 4(a) with §=0.1. As can be seen,
N=100 or even a smaller one like N=60 is far beyond the
achievement of convergence (more precisely, the desired ac-
curacy) if a charge is away from the two edges of the trans-
lation layer. But on the other hand, as is well known for this
kind of problems, when a charge is close to the boundaries,
the convergence of the series solution will be slow, requiring
a great number of terms in the series expansion to achieve
satisfactory accuracy in the solution. The closer the charge is

0.12

‘ ) - - N=60
! --- N=80
0.1p i — N=100]]
!
% 0,08}
5 ;
% 0.06f ,
Z '
g )
e !
& 0.04f H
F
L]
0.02 }‘
o .
0 5 10 15 20

r(A)

FIG. 7. (Color online) The relative error E in the self-
polarization energy defined in Eq. (19) for the case of Fig. 4(a) with
6=0.1.

to the boundaries, the greater the required number N is.
Nonetheless, considering that a total of 10 000 uniformly
distributed charges are used in the numerical calculations, we
thus conclude that, mathematically, the series solution al-
ways converges regardless of charge location (but the con-
vergence rate could be very slow if the charge is very close
to a boundary). For example, the maximum relative error,
which occurs at the closest sample point to the inner bound-
ary, goes down approximately from 11% to 6% to 2% when
the upper limit N goes up from 60 to 80 to 100. The same
observations hold for all other cases presented in the paper.
In particular, the maximum relative error with using N
=100 among all these cases is about 5.66%, which happens
for the case of Fig. 5(b) with 6=0.01. Moreover, the numeri-
cal experiments also indicate that, to achieve the same accu-
racy, a greater upper limit N is needed if the translation layer
is thinner or the dielectric mismatch between the two under-
lying materials is larger. For examples, for the case of Fig.
4(a) where ;=2 and &,=10, the maximum relative error
with using N=100 goes up from 2.44% to 2.74% to 2.97% to
3.62% when 6 goes down from 0.1 to 0.05 to 0.02 to 0.01.
And on the other hand, for the case of Fig. 4(b) where ¢;
=2 and &,=80, the maximum relative error with using N
=100 goes up from 3.48% to 3.54% to 4.35% to 5.08% when
0 goes down from 0.1 to 0.05 to 0.02 to 0.01.

VI. CONCLUDING REMARKS

The novel three-dielectric-layer hybrid solvation model
for treating electrostatic interactions in biomolecular simula-
tions has been extended from the spherical geometry to the
prolate/oblate spheroidal geometries. The corresponding se-
ries solutions for the generalized Coulomb potential and the
self-polarization energy in terms of the associated Legendre
functions have been presented. The proposed quasiharmonic
dielectric model can overcome the inherent mathematical di-
vergence in the self-polarization energy that exists in the
simple steplike dielectric model, and can find its application
in many other areas that involve the calculation of the gen-
eralized Coulomb potential, including the calculation of self-
polarization energies of spheroidal quantum dots [16—18,25].
In addition, the model may also have potential applications
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in the simulation of light scattering by inhomogeneous sphe-
roidally symmetric particles.

Furthermore and more importantly, utilizing the analytical
solution of the quasiharmonic dielectric model, we can de-
velop a robust numerical method for solving the Poisson
equation under any three-layer dielectric model that employs
a smooth radial dielectric profile, such as the linear and the
cosinelike models mentioned in Sec. III. The idea is very
simple [30]. First we subdivide the translation layer, &,—6
< ¢E<§,+ 6, into multiple regions. Then, in each of them we
approximate the select dielectric function by a quasihar-
monic one. In this way the original continuous dielectric pro-
file is approximated by a piecewise smooth but yet continu-
ous one. Next, in each region the series solution of the
Poisson equation can be written in terms of the associated
Legendre functions. The whole solution will not exhibit any
numerical divergence in the self-polarization energy at any
interface between any two neighboring regions, an indis-
pensable property that one cannot expect if the dielectric
function in each region is approximated simply by a constant
value [16]. Finally, by following the spirit of Refs.
[21,23,30], namely, by using a procedure in analogy to the
analysis of transmission lines, we shall be able to obtain
recursive formulas for calculating those expansion coeffi-
cients in the series solutions. Due to page limit, we will
investigate this approach in detail in a separate publication
[31].

Finally, as pointed out before, the results can be straight-
forwardly extended to triaxial ellipsoidal cavities, which may
be needed since, for example, realistic quantum dots might
neither be perfect spheres nor be perfect spheroids. What
makes it even more important is the fact that, among the 11
coordinate systems in which the Laplace equation (more pre-
cisely, the Helmholtz equation) is separable, the other ten
coordinate systems can be considered as degenerate forms of
the ellipsoidal one [27]. Generally speaking, to extend the

PHYSICAL REVIEW E 81, 016701 (2010)

results from the spheroidal geometry to the ellipsoidal one,
the spheroidal harmonics are to be replaced by the ellipsoidal
harmonics. In particular, the radial functions, which are the
associated Legendre functions of the first and the second
kinds P}'(£) and Q)'(é) under the prolate coordinate system,
are now the Lamé functions of the first and the second kinds
EP(¢€) and FP(£) [32-36]. Accordingly, a quasiharmonic
three-layer dielectric permittivity profile can be defined by

&, if £é=¢,
s(§)=\[a+BROP. if §<é<éo.  (20)

€, if ¢€=¢,

where
¢ Ve, - cove; ~ Ve;— s,
1 o) 5 o)

with

€1 =F(l)(§1)’ C2=F(1)(§0)~

The analytical solution to the Poisson equation correspond-
ing to this dielectric model can then be obtained in the same
way as described in this paper, and the resulting formula-
tions, although undoubtedly more elaborate and cumber-
some, are expected to be very similar to those for the sphe-
roidal geometry. However, again due to page limit, we will
investigate this most general case in detail in a future publi-
cation.
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